运筹与统计系
吕美英

职称:教授

系部:数学系

办公室:数学系311室

办公电话:

邮箱:lmy19831102@163.com

研究方向

分形几何与度量数论

主讲课程

高等数学、线性代数、概率论与数理统计、近世代数、泛函分析、分形几何

代表论著

1. Meiying Lü, Zhenliang Zhang, On the increasing partial quotients of continued fractions of points in the plane, Bull. Aust. Math.Soc.,105 (2022), 404-411.

2. Meiying Lü, On the fast increasing digits in Lüroth expansions, Fractals, 29(7)(2021), 2150220.

3. Yuan Zhang, Meiying Lü, Multiplicative Diophantine approximation of the expansions under different bases on a line, Fractals, 29(4)(2021), 2150102.

4. Mei-Ying Lü, The growth rate of the digits in Lüroth expansions. Fractals, 28(4)(2020), 2050064.

5. Mei-Ying Lü, On the exceptional sets in Sylvester expansions, Lithuanian Mathematical Journal, 58 (2018), 48-53.

6. Mei-Ying Lü, Jia Liu, Hausdorff dimensions of some exceptional sets in Engel expansions, J. Number Theory, 185(2018),490-498.

7. Jia Liu, Mei-Ying Lü, Hausdorff dimension of some sets arising by the run-length function of β-expansions, J. Math. Anal. Appl. 455 (2017) ,832–841.

8. Mei-Ying Lü, Jia Liu, Zhen-Liang Zhan, Exceptional sets of the Oppenheim Expansions over the field of formal Laurent series, Finite Fields and Their Applications, 42(2016), 253-268.

9. Zhen-Liang Zhan, Mei-Ying Lü,The relative growth rate of the largest partial quotient to the sum of partial quotients in continued fraction expansions,J. Number Theory, 163(2016), 482-492.

10.Mei-Ying Lü, A note on Engel series expansions of Laurent series and Hausdorff dimensions, J. Number Theory, 142(2014), 44-50.

11.Mei-Ying Lü, Diophantine approximation and Beta-expansions over the field of formal Laurent series, J. Approx. Theory, 174 (2013), 140-147.

12.Mei-Ying Lü, Metric properties and exceptional sets of beta-continued fractions of Laurent series, Publ. Math. Debrecen, 83 (2013), 1-19.

13.Mei-Ying Lü, Bao-Wei Wang, Jian Xu, On sums of degrees of the partial quotients in continued fraction expansions of Laurent series, J. Math. Anal. Appl., 380 (2011), 807-813.

主持项目

1. 一类Diophantine逼近问题的研究,国家自然科学基金青年基金,201501-201712,主持.

2. Cantor集上丢番图逼近问题研究,国家自然科学基金天元基金,201401-201412,主持.

3. 形式级数域Oppenheim级数与连分数展式的度量性质,重庆市科委面上项目,202208-202507,主持.

4. Oppenheim展式中例外集的维数刻画, 重庆市科委面上项目, 201808-202107, 主持.

5. 丟番图逼近中不可很好逼近集的维数理论, 重庆市科委面上项目, 201508-201807, 主持.

6. Veronese曲线上丢番图逼近中的分形理论, 重庆市教委一般项目,202010-202309, 主持.

7. 数的表示理论与维数, 重庆市教委一般项目, 201701-201912, 主持.

8. 分形集上的丢番图逼近问题,重庆市教委一般项目,201408-201707,主持

荣誉获奖

1. 重庆师范大学第四批青年拔尖人才项目, 重庆师范大学, 201801.

2. 第七届青年教师课堂教学技能竞赛, 重庆师范大学, 三等奖, 201906.